Global modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation

نویسندگان

  • R. Mirzavand
  • A. Abdipour
  • G. Moradi
  • M. Movahhedi
چکیده

This paper describes a new unconditionally stable numerical method for the full-wave physical modeling of semiconductor devices by a combination of the finite-difference Laguerre time-domain (FDLTD) and alternative direction implicit finite-difference time-domain (ADI-FDTD) approaches. The unconditionally stable method by using FDLTD scheme for the electromagnetic model and semi-implicit ADI-FDTD approach for the active model leads to a significant decrease in the full-wave simulation time. Numerical simulations of an example transistor and a power amplifier show the efficiency of presented method for the full-wave simulation of mm-wave active circuits. Copyright © 2012 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

Band Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect ‎Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method‎

We report the simulation results for impact of nonlinear Kerr effect on band structures of a ‎two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide ‎‎(W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a ‎square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The ‎numerical simulation was performed using...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012